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CALCULATION OF THE TWIST DISTRIBUTION OF WINGS

DESIGNED FOR CRUISE AT TRANSONIC SPEEDS

By Michael J. Mann

Langley Research Center

SUMMARY

The use of linear theory in calculating the twist distribution of a wing designed for

cruise at supercritical speeds is justified on the basis of the transonic equivalence rule.

A modified version of Multhopp's subsonic lifting-surface theory has been used to calcu-

late the twist distribution. The lifting-surface theory is compared with both slender-wing

theory and experimental results. A study is also made of the effect of wing sweep on the

twist distribution required to maintain an elliptic span load at cruise conditions. The

important parameters used in establishing this twist distribution are identified.

INTRODUCTION

Extensive aerodynamic research is currently being carried out in the area of tran-

sonic flight. The development of the National Aeronautics and Space Administration super-

critical airfoil (ref. 1) has opened the possibility of speed increases and weight reduction

in transport aircraft. With this airfoil, it may also be possible to improve the maneuver-

ing capability of fighter aircraft operating at high lift in the transonic range, if proper

account is taken of the low aspect ratio and high sweep of these aircraft.

The transonic technology developments which have occurred to date have relied

almost exclusively on wind tunnel and other experimental techniques. Theoretical methods

of calculating a transonic inviscid flow have largely been limited to two-dimensional solu-

tions and to an endless variety of adaptations of three-dimensional linear solutions.

Bailey and Steger (ref. 2) and Ballhaus and Bailey (ref. 3) have developed numerical

methods for solving the transonic. small perturbation equation on three-dimensional lifting

wings. The results of these methods show good agreement with other theoretical solutions

and experimental data.

Slender-body theory has been used by Spreiter and Stahara (ref. 4) to study transonic

lifting wing bodies at angles of attack where the flow is thickness dominated. The form of

the equivalence rule discussed relates the lifting wing-body flow to the axisymmetric flow

on a body of revolution having the same longitudinal distribution of cross-sectional area.

(See also chapters 6 and 12 of ref. 5.) Some experimental verification of the theory was

obtained.



Using the method of matched asymptotic expansions and approximations from

slender-body and slender-wing theory, Barnwell (ref. 6) and Cheng and Hafez (ref. 7) have

extended the theory of transonic lifting wing bodies to larger angles of attack. At larger

angles of attack the effects of lift are comparable to, or dominate, the effects of thickness.

The equivalence rule then relates the outer flow about a wing body to the axisymmetric

flow about a body of revolution whose cross section depends both on the geometrical cross

section of the original body and on the longitudinal lift distribution.

The design of minimum drag wings for transonic aircraft requires that the effects

of the fuselage be taken into account. Near sonic speeds there is a strong interaction

between the wing and fuselage. Small changes in the fuselage shape affect the strength of

the shock waves, which in turn affects the performance of the wing. Aside from local

effects, the equivalence rule itself shows that the fuselage and the lift distribution affect

the overall area distribution. Presumably, the overall area distribution determines the

shape for minimum drag configurations (local effects being considered). Hence, the

slender-body theories may be useful for the design of minimum drag wings for transonic

aircraft. However, these theories need experimental verification and further development.

Owing to the lack of a suitable transonic theory, linear theory is used for transonic

design work under some conditions. Lock and Rogers (ref. 8) use linear theory in design-

ing transonic wing bodies (moderate wing taper) so that the isobars on the wing are essen-

tially straight. The concept has been experimentally verified by Lock (ref. 9) for conditions

where the local Mach number normal to the isobars is less than 1.0 over most of the wing.

A quasi-two-dimensional flow (independent of span location except at center-line kink and

wing tips) without shock waves was obtained for the wing. There is no rigorous justification

for this use of linear theory; however, theory shows that the flow over an infinite swept cyl-

inder changes from elliptic to hyperbolic when the normal component of the Mach number

exceeds 1.0 at any point in the flow. 1 Since the lift coefficients necessary in practice may

be high enough so that some supercritical flow and shock waves exist on the wing, this
design procedure may not always be practical.

The purpose of the present study is to justify the use of linear (subsonic lifting sur-

face) theory for calculating the twist distribution required to maintain an elliptic span load

at transonic cruise conditions. The justification for this use of linear theory is made on
the basis of the transonic equivalence rule. The results are verified by comparison with
experimental data and slender-wing theory. The effect of wing sweep on the required
twist distribution is also investigated. The portion of the transonic range studied consists
of speeds up to and including sonic free-stream Mach number.

1An infinite swept cylinder produces cylindrical pressure wavelets which propagate
in a direction normal to the cylinder. These wavelets can only coalesce to form a shock
wave when the normal component of the Mach number exceeds one.
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SYMBOLS

Values are presented in both SI Units and U.S. Customary Units. The measure-

ments and calculations were made in U.S. Customary Units.

Aj(x,y,?7) influence coefficient matrix elements, m - 1 (ft - 1 ) (see eq. (6))

b wing span, m (ft)

CL wing lift coefficient, Wing lift
q0

S

CL,N CL based on VN, see equation (10)

Plower - Pupper
ACp pressure loading, q 

)

c local streamwise wing chord, m (ft)

cav average chord, S/b, m (ft)

Local chord load
cI  section lift coefficient,

qc

MN component of Moo defined by equation (9)

Moo free-stream Mach number

N number of pressure modes is denoted by N + 1

p static pressure, N/m 2 (lbf/ft2 )

qj () coefficient of the jth chordal loading function, N/m (lbf/ft); j = 0 to N

q, free-stream dynamic pressure, pV22, N/m2 (lbf/ft 2)

S actual wing area, m 2 (ft2 )

VN = V, cos Ac/2, m/sec (ft/sec)

Vo free-stream velocity, m/sec (ft/sec)
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w perturbation velocity in z-direction, m/sec (ft/sec)

x,y,z right-hand Cartesian coordinate system with origin in plane of symmetry at

wing root midchord, m (ft) (see fig. 1)

x' dummy variable form of x, m (ft)

E wing twist angle, rad (deg)

17 dimensionless spanwise coordinate, -
b/2

0 chordwise angular location of ACp, rad (deg)

Ac/2 sweep of midchord line on outboard portion of wing, rad (deg) (see fig. 1)

P, free-stream density, kg/m 3 (slugs/ft3 )

perturbation velocity potential, m 2 /sec (ft2 /sec)

Subscripts:

LE leading edge

TE trailing edge

Mathematical symbols:

[] square matrix

column matrix

BASIC CONCEPTS

The transonic equivalence rule outlined by Spreiter and Stahara (ref. 4) states that

the flow near a lifting slender-wing body at transonic speeds is the sum of two simpler

flows. These simpler flows are the axisymmetric transonic flow over the equivalent body

of revolution and the two-dimensional incompressible cross flow which will make the flow

tangent to the surface. (See refs. 4 and 5.) Spreiter and Stahara point out that the loading

on the wing, that is, the difference in pressure across the wing, depends only on the cross-
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flow solution and can be calculated by linear theory even at transonic speeds. Since wing

twist distribution depends mainly on the spanwise load distribution, the equivalence rule

therefore indicates the possibility of designing the twist of a sonic aircraft wing by use of

linear theory.

The same type of approach is not valid for the design of transonic airfoils. Linear

theory indicates that the airfoil can be separated into thickness and camber, and that the

same camber with different thickness distributions results in the same net pressure load-

ing. These results are clearly incorrect in the nonlinear transonic range.

A linear theory has been used by Igoe (ref. 10) to calculate the twist distribution

required for cruise near sonic speeds. Igoe found good agreement between the prediction

of the theory and an experimentally determined twist of a supercritical wing, designed for

low drag and high drag-divergence Mach number so as to result in efficient cruise near

Mo = 1. Igoe used an expression for the downwash from reference 11 which applies to

a wing of arbitrary aspect ratio at Mo = 1. However, the expression also agrees with

results of slender-wing theory (slender or low-aspect-ratio wings at arbitrary Mach num-

ber). This agreement is not surprising because as M, approaches 1.0, the Prandtl-

Glauert correction continually reduces the aspect ratio. Hence, a high-aspect-ratio wing

mathematically reduces to a slender wing as M, approaches 1.0. Both cases, the high-

aspect-ratio wing at M, = 1 and the low-aspect-ratio or highly swept wing at arbitrary

Mach number, are three-dimensional problems whose solutions can be obtained from the

two-dimensional equation (discussed in refs. 11 and 12)

2 a2- 0 (1)
8y 2  az 2

In the method of reference 10, the downwash at a given point on the wing is obtained

by integrating over the area of the wing defined by the Mach forecone which is a plane at

M, = 1. The downwash is twice the value of the near-wake downwash from the portion of

the wing forward of the given point; this is due to the fact that the Prandtl-Glauert trans-

formation moves the point into the far wake of the forward part of the wing.

The present study utilizes the modified Multhopp lifting-surface theory for subsonic

flow according to Lamar (ref. 13). This method of solving the downwash equations of

lifting-surface theory (eq. (7-28) of ref. 5) uses a series representation of the pressure

loading ACp of the form2

2 Reference 13 uses c for chord and c(,q) for half-chord. In the present report

c 7)
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2 qo() N nj (2)AC(0,7) = cot -+ sin jO (2)
c(a) o q 2 qo

where qj(r) is the coefficient of the jth chordal loading function and 0 and 77 are the

chordwise and spanwise variables, respectively. The number of unknown pressure modes

is N + 1.

Setting the leading-edge singularity to zero (qo = 0) yields a sine series for the

chordwise load at r7. In the present study, it was found that most practical loadings could

be represented by a sine series. In this case the section load becomes

cl(() C(N) = q) (3)
2 qoo

By assuming an elliptic spanwise load to minimize induced drag, and using the relation for

the total wing lift

1 c (( 4)  ())
C L = 1 dcav  (4)

0 cay

the ql()/qg, coefficient can be written as

q l(l) 8_ cavCLTl_ r72  (5)

Determining the wing twist distribution involves what is referred to as the design

problem. In the design problem the chordwise and spanwise load distributions, the plan-

form, the design lift coefficient, and the cruise Mach number are specified. Once the

shape of the chordwise load at 77 is selected, the coefficients qj()/q1 (7l) can be calcu-
lated by a Fourier sine-series analysis. If the planform and the design lift coefficient

CL are known, the value of ql(7)/q, can be computed from equation (5), and then each
of the qj() qoo coefficients can be computed.

The downwash at point (x,y) on the planform is then computed from the matrix
equation

=(xy [A(xy, (6)

where the AJ(x,y, 7)'s are elements of the influence coefficient matrix for computing
the downwash at (x,y) caused by the jth chordal loading function at 7. The elements
A3 (x,y,7) are functions of the planform shape and cruise Mach number. (See ref. 13.)
Once the downwash is known, the shape of the mean camber surface is found from
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c (x/c)TE ) (7)

where z/c is computed for the point x/c.

The twist angle E at each span station is then computed from

tan E =)LE (E

Since (z/c)TE = 0 in reference 13, then

E = tan- E

In order to be consistent with the approximations of linear theory, it is assumed that

)LE = tan EE (8)

From equations (7) and (8) it is seen that the angle of twist is approximately propor-

tional to the downwash velocity. It is also seen from the preceding results that the down-

wash velocity is directly proportional to the wing lift coefficient. Thus, once the loading,

the planform shape, and the Mach number are fixed, the magnitude of E varies linearly

with the magnitude of CL, and the value of E/CL at each span station is independent of

the magnitude of CL. This approximation was used in the calculations.

RESULTS AND DISCUSSION

Figure 1 and table I describe the wing planforms analyzed in this study. The number

of chordwise control points, which also equals the number of chordwise pressure modes, 3

was 8; the number of spanwise stations on a semispan at which control points were located

was 12 (includes station at wing center line).

Figure 2 shows the twist distribution of the 400 wing as calculated by lifting-surface

theory for various values of the free-stream Mach number; also shown is the twist calcu-

lated by using slender-wing theory, as presented in figure 7 of reference 10. Since the

twist is proportional to the wing lift, the twist angle has been divided by the wing lift

coefficient. As shown in the sketch in the figure, the planform is approximated by

3 Control points are locations where the tangent flow condition is satisfied; pressure
modes are the trigonometric terms of equation (2).
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straight line segments. Elliptic spanwise and rectangular chordwise loads were imposed

for both solutions.

It is seen that as M, approaches 1.0, the lifting-surface solution approaches the

slender-wing solution, and for M,, = 0.9999, the lifting-surface solution is identical to

the slender-wing solution outboard of q = 0.5. This is to be expected since, as explained

previously, the transformed (equivalent incompressible) wing becomes very slender as

M, approaches 1.0. The areas of integration of the wing loading used to obtain the

downwash at a given point on the wing also become equal for the two methods. The

slender-wing solution integrates over the portion of the wing ahead of a given point.

The lifting-surface solution integrates over the entire wing surface; however, the portion

of the wing surface downstream of the given point has no influence on that point. This

lack of influence can be seen by imagining that the downstream region of the wing is repre-

sented by, for example, a horseshoe vortex lattice. Infinitely far downstream of a horse-

shoe vortex, the induced downwash approaches a constant value. However, infinitely far

upstream of a horseshoe vortex, the induced velocity goes to 0 (ref. 14). Since a horse-

shoe vortex downstream of a given point on the wing will be moved infinitely far down-

stream from the point on the transformed wing as M, approaches 1.0, the vortex will

not influence the given point.

Figure 2 shows that the net twist increases as M, increases. This result can be

explained by recalling that the angle of twist is directly proportional to the downwash

velocity. As M, increases, the transformed wing sweep increases, and points on the

wing are swept farther into the wake of the more forward points, and therefore encounter

greater downwash. The dip in the twist distribution in figure 2 between 7 of 0.2 and 0.4

is caused by the crank in the leading edge at 7 = 0.266.

Figure 3 compares the twist distribution from the lifting-surface theory with an

experimentally determined twist distribution at M, = 1.00. The calculations were made

on the exact planform shape of the 400 wing (table I). An elliptic spanwise load distribu-

tion was used because the experimental spanwise load was very close to elliptic. Calcu-

lations were made for a rectangular chordwise load distribution and for the experimental

chordwise load distributions that occurred near the design cruise condition. Two repre-

sentatative experimental chordwise loads are shown in figure 4 with the Fourier sine

series used to approximate them.

The experimental twist distribution in figure 3 was obtained from figure 7 of refer-

ence 10. These data were determined by model measurements which were corrected for

wing incidence, angle of attack, and aeroelastic effects caused by bending. This wing was

designed for low drag and high drag-divergence Mach number so as to result in efficient

cruise near M., = 1. At transonic speeds it is difficult to design a wing to maintain an

elliptic span load because of the requirement for high lift coefficients at the tip. However,
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as seen from reference 10, the experimental spanwise load distribution was very close to

elliptic.

From figure 3 it is seen that the theory predicts the approximate magnitude and

distribution of twist. The absence of the effects of the fuselage and the assumption of

small perturbations in the calculations could account for the small discrepancies between

the theory and the experiment.

The three planforms described in table I and figure 1 were used to determine the

effect of sweep on the twist distribution. As indicated in figure 1, the planform variations

occurred primarily on the portion of the wing outboard of the glove. Assuming that a

quasi-two-dimensional flow exists over most of the wing, simple-sweep theory was used

to define the cruise Mach numbers and the wing lift coefficients for the 36.50 and 310

wings. Because of the difficulty of maintaining two-dimensional flow over the entire span

of a swept wing, it is not expected that the full benefit of sweep, as predicted by simple-

sweep (cosine) theory, would be obtained. However, unpublished data from wind-tunnel

tests by the Langley Research Center on carefully designed wing-body combinations have

indicated that sweep benefits on drag-rise Mach number as large as 1/cos0.8Ac/2 can

be realized. Thus the normal component of Mach number was defined as

MN = M" cos0.8Ac/2 (9)

where Ac/2 is the sweep of the midchord line on the outboard section. The wing lift

coefficient based on the normal component of free-stream velocity CL,N was calculated

from the usual simple-sweep theory relation

CL = CL,N cos 2Ac/2 (10)

Equations (9) and (10) were used to define the conditions for two cases. In the first

case, the wing lift coefficient and normal component of Mach number were held constant;

in the second case, both the lift coefficient based on the normal component of free-stream

velocity and the normal component of Mach number were held constant. The latter case

was an attempt to maintain the same sectional properties (based on VN) over most of the

span as the sweep was changed. (See ref. 15.)

Results for the first case are shown in figure 5. The lift coefficient was held con-

stant at 0.31. By assuming a cruise Mach number of 0.9999 for the 400 wing, the normal

component of Mach number was held constant and the cruise Mach numbers were calcu-

lated from equation (9) for the 36.50 and 310 wings. The experimental chordwise load dis-

tributions used in figure 3 and an elliptic spanwise load were used. Figure 5 indicates

that significantly less twist is required as the sweep angle and Mach number are lowered.

(The effect of Mach number alone is seen in fig. 2.)
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Results for the second case are shown in figure 6. The wing lift coefficients

required to maintain the airfoil near its design lift condition were determined from equa-

tion (10) with CL,N held constant. The Mach numbers and load distributions of figure 5

were used. Figure 6 shows that the effect of reduced Mach number and sweep angle is

offset by the effect of an increase in the lift coefficient; thus, there is very little difference

in the twist for the three wings. The contrasting effects of lift coefficient and Mach num-

ber are consistent with the results of figure 2.

Finally, it is useful to identify which factors primarily influence the wing twist. As

seen from the preceding discussion, the wing twist for efficient cruise is determined by the

planform shape, the cruise Mach number, the design lift coefficient, and the spanwise and

chordwise load distributions. The effect of a large change in the shape of the chordwise

load distribution on the twist of the 400 wing at a Mach number of 0.9999 is shown in fig-

ure 7. It is seen here, and also in figure 3, that for this planform the effect of large

changes in the shape of the chordwise load distribution is small. Hence, for the cases

investigated, if the span load is constrained to be elliptic, a family of twist distributions

can be generated for a given planform which would apply to a reasonable range of chord

loads. If it is assumed that tan E = E and the twist is generated in terms of E/CL for

different span stations, the single parameter of this family would be M,. A series of

curves such as those in figure 2 would result.

CONCLUSIONS

The transonic equivalence rule shows that chordwise and spanwise load distributions

can be calculated on lifting wing bodies at transonic speeds using linear theory. Since

wing twist distribution depends mainly on the spanwise load distribution, the equivalence

rule therefore indicates the possibility of designing the twist of a sonic aircraft wing by

use of linear theory.

As the free-stream Mach number approaches 1.0, the wing twist calculated by linear

subsonic lifting-surface theory approaches the result calculated by slender-wing theory.

Linear lifting-surface theory was compared with experimental results on a high-

aspect-ratio wing at transonic cruise conditions. The comparison showed that the theory

predicts the approximate magnitude of the wing twist distribution required to maintain an

elliptic span load for these conditions.

When the lift coefficient and component of Mach number normal to the outboard mid-

chord line were held constant, variations in the sweep of the portion of a high-aspect-ratio

wing outboard of the glove were found to require moderate changes in the twist distribution

at transonic speeds. However, if both the normal Mach number and the lift coefficient

based on the component of free-stream velocity normal to the outboard midchord line are
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held constant, as suggested by simple-sweep theory, it was found that only small changes

occur in the twist distribution.

For a given planform and an elliptic span load distribution, a single parameter fam-

ily of twist distributions can be developed. This family is applicable to a reasonable

range of chord load distributions and a lift coefficient low enough to insure that the tan-

gent of the twist angle can be approximated by the angle itself. The family results from

a plot of the twist angle divided by wing lift coefficient against spanwise location, with

the cruise Mach number as a parameter.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., October 8, 1974.
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TABLE I.- PLANFORM COORDINATES

Sweep angle refers to sweep of midchord line
of the outboard portion of wing]

(a) 400 swept planform; cav/(b/2) = 0.3860

Xmidchord c/b
b/2

0 0 0.5602

.13053 .2111 .3549

.25882 .4013 .2051

.38268 .5209 .1642

.50000 .6191 .1473

.60876 .7102 .1327

.70711 .7929 .1196

.79335 .8658 .1076

.86603 .9271 .0978

.92388 .9756 .0902

.96593 1.0107 .0844

.99144 1.0320 .0807
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TABLE I.- PLANFORM COORDINATES - Continued

(b) 36.50swept planform; cav/(b/2)= 0.3511

Xmidchord c/b

b/2

0 0 0.5438

.13053 .2092 .3399

.25882 .4012 .1898

.38268 .5142 .1506

.50000 .5988 .1359

.60876 .6794 .1229

.70711 .7519 .1100

.79335 .8153 .0992

.86603 .8692 .0906

.92388 .9115 .0830

.96593 .9426 .0779

.99144 .9611 .0746
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TABLE I.- PLANFORM COORDINATES - Concluded

(c) 310 swept planform; cav/(b/2) = 0.3085

Xmidchord c/b

b/2

0 0 0.5221

.13053 .2046 .3241

.25882 .3989 .1649

.38268 .4908 .1336

.50000 .5604 .1207

.60876 .6275 .1094

.70711 .6859 .0982

.79335 .7373 .0886

.86603 .7804 .0808

.92388 .8160 .0741

.96593 .8409 .0700

.99144 .8562 .0671
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36.50

400

x
Figure 1.- General planforms and coordinate system. Sweep angles

are given for the midchord line of the outboard panels.
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Figure 2.- Wing twist according to lifting-surface theory and slender-wing

theory with elliptic spanwise and rectangular chordwise loads.
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chordwise load

-8- Rectangular
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Figure 3.- Comparison of wing twist calculated by lifting-surface
theory of reference 13 with experimental results at M, = 1.00.
Theory assumes an elliptic spanwise load.
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Figure 4.- Representative experimental chordwise loads at two span stations on

the 400 swept wing at M, = 0.99 and the design lift coefficient with their

Fourier sine-series approximation.
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Figure 5.- Sweep effect on wing twist according to lifting-surface theory of ref-

erence 13 with MN and CL held constant (CL = 0.31). Experimental

chordwise load of 400 wing and elliptic spanwise load.
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Figure 6.- Sweep effect on wing twist according to lifting-surface theory

of reference 13 with MN and CL,N held constant. Experimental

chordwise load of 400 wing and elliptic spanwise load.
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Figure 7.- Chordwise load effect on wing twist according to lifting-surface theory of

reference 13 on the 400 swept wing at Moo = 0.9999. Elliptic spanwise load.
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